
�

NAS Requirements Checklist
for Job Queuing/Scheduling Software

James Patton Jones1

NAS Technical Report NAS-96-003 April 96

���������
	�����
	�� ��
	��
� �����
NAS High Performance Processing Group

NASA Ames Research Center
Mail Stop 258-6

Moffett Field, CA 94035-1000

Abstract

The increasing reliability of parallel systems and clusters of computers has
resulted in these systems becoming more attractive for true production workloads.
Today, the primary obstacle to production use of clusters of computers is the lack
of a functional and robust Job Management System for parallel applications. This
document provides a checklist of NAS requirements for job queuing and schedul-
ing in order to make most efficient use of parallel systems and clusters for parallel
applications. Future requirements are also identified to assist software vendors
with design planning.

1.0 Intr oduction

The Numerical Aerodynamic Simulation (NAS) supercomputer facility, located
at NASA Ames Research Center, has, for the last few years, been working to
bring parallel systems and clusters of workstations into a true production

�������������! �"�� ��#�$&%'$)(+*, �-/.10�"�-2#�$&%&3�4!�65�7�8�7�����*,9/9!:;-/-�<>=?:;@?AB��(+$DC65�8�7�E�4!��8�8�8

F

environment. One of the primary difficulties has been identifying a robust Job
Management System (JMS) capable of handling parallel jobs. For a complete
discussion of the role and need of a JMS, see [Sap95a].

The purpose of this document is to supplement the above referenced JMS
paper, by providing a checklist of the current requirements for the job queuing,
scheduling, and resource management software components of a JMS in order
to efficiently run parallel jobs on parallel computers and clusters of
workstations. This document will be used as the basis for an evaluation of
potential job management systems for NAS and the AHPC project, NASA
Cooperative Agreement NCC3-413. (For a complete description of the
cooperative agreement see [CAN95].)

This paper is divided into two sections: (1) initial definitions and (2) actual
requirements. The list of requirements is divided into three main categories:
absolute requirements, recommended capabilities, and future requirements. Each
is rated as high, medium, or low priority. The priorities indicated are those
assigned by the AHPC project team members.

2.0 Definitions

A job management system (JMS) generally fills three roles, often as separate
modules: Queuing, Scheduling, and Resource Management. (For reasons for
this trichotomy and a detailed analysis of Job Management needs in general,
see [Sap95a].)

TheQueuing role has traditionally been filled with batch systems, such as NQS
[Kin86]. The Scheduling role is the process of selecting which jobs to run,
according to a predetermined policy.Resource management refers to the
monitoring, tracking and reservation of system resources; and enforcement of
usage policy.

For the purposes of this discussion, ajob is a sequence of operations requested
by a user, of which a parallel application is the main part. The terms “job” and
“application” may be used interchangeably. A job may consist of processes on
one or more processors. There are several terms describing jobs that need to be
clarified for use in this document:

A serial job can be thought of as a special case of the above job definition
where there is only one process, instead of multiple, parallel processes.

A batch job is submitted through a JMS and run when the requested
resources are available.

An interactive job is generally the opposite of a batch job in that a user is

G

implicitly permitted to log directly into a computer and run jobs without
going through a JMS. For example, a researcher who runs a job on the
workstation on her desk.

An interactive-batch job is a special type of batch job in which the job is
submitted to a JMS, but when the job runs, the user is given access to and
control of the job’s input, output, and error file streams (stdin, stdout, and
stderr, respectively), allowing the user to interact with the job.

A foreign job is an interactive job running on a compute resource to
which it has not been granted access. For example, when a user runs a job
on a dedicated compute resource without going through a required JMS.

Also for the purposes of this paper, the termnode refers to a single computer
that contains specific resources, such as memory, network interfaces, one or
more CPUs, etc. For definitions of other terms relating to Queuing and Job
Management Systems in general, see [Hen95].

3.0 Requirements

This paper focuses on the requirements for Queuing and Scheduling. However,
since these two elements are tightly integrated with the Resource Management,
requirements are given for the Resource Manager as well.

3.1 Job Management System

The complete JMS has several overall requirements, including:

High Priority

3.1.1 Must operate in a heterogeneous multi-computer environment. The
JMS must be capable of managing any number of machines, in any
number of combinations: including shared-memory multi-processor
computers, parallel machines, and both tightly and loosely coupled
clusters of workstations.

3.1.2 Must be capable of integrating with frequently used distributed file
systems, to include NFS, AFS, and DFS. Specifically, the JMS must
be able to execute in the DCE/DFS environment utilizing the
DCE/DFS ACL features for file permissions.

3.1.3 Must possess a command line interface to all modules of the JMS.

3.1.4 Must include a published API to every component of the JMS (i.e.
resource manager, scheduler, and queuing subsystems) that allows

H

local tools and utilities to be written to interface with the JMS
components.

3.1.5 Must be able to enforce resource allocations and limits on:

● Number of CPUs per job
● Number of nodes per job
● Type of nodes per job
● Number of jobs executing per user
● Number of jobs executing per group
● Wall clock time
● CPU time (per node and per application)
● System time
● Memory utilization
● Disk usage
● Swap space
● Dedicated access
● Shared access
● Network adapter access

3.1.6 Software must permit multiple instances and versions to exist and run
simultaneously on the same systems. This is needed, in part, for
testing new releases before production use.

3.1.7 Source code must be available for complete JMS. This is primarily
needed for bug-fixes.

3.1.8 Must supply the ability to define more than one user id as the manager
of the software. These ids, ideally, would not need overall root
privileges on the machine running the JMS software. It is also
desirable to be able to define JMS operator ids as well. The operator
ids would have a subset of the manager’s privileges which would
include, but not be limited to starting and stopping queues,
suspending, moving, restarting, and killing jobs.

Medium Priority

3.1.9 Must provide a means of user identification outside the password file.
This would provide a much more convenient way of maintaining
authorized users for cluster configurations.

3.1.10 Must be scalable. Specifically the JMS must be capable of:

● Managing very large clusters (> 500 nodes)
● Allowing very large parallel jobs (> 200 nodes)

I

3.1.11 Must meet all requirements of appropriate standards, including:

● POSIX 1003.2d “Batch Queuing Extensions for Portable Operating
Systems”.

3.2 Resource Manager Requirements

High Priority

3.2.1 Must be “parallel aware,” i.e. understand the concept of a parallel job
and maintain complete control over that job. This capability requires:

● Tracking all processes (and sub-processes) of the job.

● Being able to kill any job completely, including sub-processes,
without leaving orphaned processes. This implies that the JMS must
be aware of distributed processes and capable of forwarding signals.

● Being able to “clean up” after jobs, i.e. provide node condition
equivalent to the state before the given job existed.

● Collecting complete job accounting information for all processes of
a job, which must be combined to provide an aggregate job
accounting record, in addition to per-node totals. The job accounting
record must indicate total usage of all resources allocated to the job,
and which limits, if any, were exceeded. See also [Sap95b].

● Providing a mechanism (i.e. a programming interface) which allows
a parallel program to communicate with the JMS to coordinate
resource usage and to start processes.

3.2.2 Must be able to support and interact (i.e. coordinate resource
allocations) with the following:

● MPI
● PVM
● HPF

3.2.3 Must provide file “stage-in” and “stage-out” capabilities that allows
the user to identify files that should be transferred to and from
appropriate locations on the computer system on which his/her job
will be run. Stage-in needs to occur before the actual job starts, but
after disk resources have been allocated for that job. Stage-out should
follow termination of the job, but before the disk resources are
released for re-allocation.

J

3.2.4 User-level checkpointing/restart (AHPC project completion date:

March 31st1996):

● Allowing application to periodically checkpoint its state without
system support.

● JMS should have a well-defined interface to facilitate checkpoint
and restart.

● JMS default should be able to checkpoint (if possible) when
stopping a job or if the JMS goes down; and to restart the job (from
the checkpoint if available, otherwise from the beginning of job).
The user should be able to override this default if job restart is not
wanted, in the event that the job is stopped.

Medium Priority

3.2.5 Must provide a history log of all jobs, to include:

● Time job entered batch system
● Time job entered (each) queue
● Time job started execution
● Time job suspended execution
● Time job restarted execution
● Time job terminated
● Exit status of job
● Total usage and identification of each resource allocated to job (as

specified in 3.1.5).

3.2.6 Asynchronous communication between application and Job Manager
via a published API:

● To request specific resource (number of nodes, amount of time, etc.,
as specified in 3.1.5)

● Acquire resources through non-blocking request with asynchronous
notification of resource availability

● Specify if and when an application can release resources
● Provide for Job Manager preemptive and cooperative resource re-

acquisition for reallocation

3.2.7 Must be integrated with authentication/security system. This includes
providing:

● Well documented interface with security/authentication system
● Site configurable authentication mechanism
● Necessary hooks for site to interface JMS with local environment
● Out-of-the-box support for common and standard authentication

systems, including DCE.

K

3.2.8 Interactive-batch jobs must run with standard input, output, and error
file streams connected to a terminal.

3.3 Scheduler Requirements

High Priority

3.3.1 Must be highly configurable, supporting:

● Complex scheduling, allowing different scheduling policies at
different times of the day, and distinction between prime and non-
prime time

● Dynamic and preemptive resource allocation (reshuffling queue,
tiling, etc.)

● Awareness/distinction between batch, interactive, interactive-batch,
and foreign jobs

3.3.2 Must provide simple, out-of-the-box scheduling policies, including:

● First in, first out (FIFO)
● Shortest job first
● Favor large memory (or CPU) jobs, or small jobs
● Favor long running jobs, or short jobs
● Load balancing (time-shared systems)
● User or group priority
● Fair sharing (past usage consumption)

3.3.3 Must schedule multiple resources simultaneously, including at least
the following:

● Number of nodes
● Type of nodes (compute, I/O, big memory, multiprocessor)
● Number of processors per node
● Memory per node
● Network connections (Ethernet, HiPPi, FDDI, ATM, etc.)
● Disk (local, system, scratch, temporary, fast, etc.)
● System specific resources (e.g. switch adapter mode on SP2)
● Operating system version

3.3.4 Must be able to change the priority, privileges, run order, and resource
limits of all jobs, regardless of the job state.

3.3.5 Coordinated scheduling is absolutely critical for almost all message
passing jobs as there is severe performance degradation when
resources are simultaneously used by different jobs. Space-sharing (or

L

tiling, allocating nodes or Processing Elements as dedicated resources
to support non-overlapping jobs) is the only effective way to
accomplish coordinated scheduling in the absence of gang-scheduling
(synchronized time-sharing, see also 5.1.1).

Medium Priority

3.3.6 Must provide mechanism to implement any arbitrary policy. Policy
expressed by a simple set of rules is generally not sufficient, as it does
not allow for complete flexibility within a given site. This requires:

● Scheduler must be separable from JMS. A site needs the ability to
both modify and replace the scheduler.

● A published API must be available to the system administrator to
implement his/her specific site scheduling policy. A parsed
configuration file alone is not sufficient.

3.3.7 Must support unsynchronized timesharing of jobs. Unsynchronized
time-sharing (time-sharing with no guarantee of synchronization
across nodes) can be used on interactive nodes where the performance
degradation from the unsynchronized time-sharing across nodes is not
as important, and for general interactive debugging.

3.3.8 Sites need to be able to define which, if any, nodes are to be time-
shared as well as the number of processes and users per time-shared
node. There may be limitations in the number of applications that can
simultaneously use the network adapter, or a given node may have a
small amount of memory or swap space.

3.4 Queuing System Requirements

High Priority

3.4.1 Must handle two job types with a common set of commands:

● Interactive (stdin, stdout, and stderr connected to the terminal
session)

● Batch (stdout and stderr directed to files)

3.4.2 User Interface must provide information on at least the following

(AHPC project completion date is March 31st 1997):

● Unique identifier for each job
● User id job executing under
● Group id job executing under

M

● Job state (including running, queued, suspended, held, exiting)
● Job priority
● Why a given job is not running
● Information about the consumed and remaining resources available

to a job
● List of allocated or requested resources for each job (as specified in

3.1.7)
● Status of all system resources (idle, reserved, available, down,

allocated)

3.4.3 Must provide for restricting access to the batch system in a variety of
site-configurable methods, to include:

● specific user restrictions
● specific group restrictions
● restrictions based on past resource consumption
● restrictions based on per user or group current resources in use
● origin of job

3.4.4 Must be able to sustain hardware or system failure, i.e. no jobs get
lost; restart, rerun, or checkpoint interrupted jobs.

3.4.5 Must be able to configure and manage one or more queues.

3.4.6 Administrator must be able to create, delete, and modify resources
and resource types.

3.4.7 Administrator must be able to change a job’s state (queued, running,
suspended, held, etc.)

3.4.8 Must allow dynamic system reconfiguration by administrator with
minimal impact on running jobs. Administrator needs to be able to
selectively remove or add nodes to the cluster without impacting
overall access to JMS functions or to the remaining nodes. Any jobs
which were running on the removed nodes must, at least, be
suspended and started up again once those nodes are turned back over
for general use. Ideally, the jobs which were running on the affected
nodes would be checkpointed, moved, and continue running on
available nodes not affected by the reconfiguration.

3.4.9 Must provide centralized administration. Log files and administration
commands must be centrally located.

3.4.10 Users must be able to reliably kill their own job. See 3.2.1.

�
N

Medium Priority

3.4.11 Must provide administrator configurable scripts/programs to be run
by JMS before and after a job, respectively. This may be used for
initialization or node clean-up.

3.4.12 Must include user specifiable job inter-dependency based on:

● Job state (see 3.4.2)
● Job return status (success, failure)
● Job submission time (e.g. “run my jobs in the order I submitted

them”)
● Job start time (e.g. “don’t run my job before noon on Tuesday”)
● Status of other computer systems (e.g. mass storage)

3.4.13 Must allow jobs to be submitted from one cluster and run on another.

(AHPC project completion date is June 30th 1996).

3.4.14 Must provide a site-configurable mechanism (at both the user and
group levels) to permit users to have access to information about jobs
from other submitters.

4.0 Requested Capabilities

The following capabilities would be extremely useful but are not absolutely
critical. The timeframe in which these capabilities should be provided is six
to eighteen months.

High Priority

4.1.1 Job scheduler should support dynamic policy changes (from any
computable scheduling policy to any other) without restarting the
batch system.

4.1.2 Possess a Graphical User Interface (GUI) to all modules of the JMS.

4.1.3 Provide a graphical representation of the configuration and usage of
the resources under the JMS. There should also be an option to view
other clusters within the same graphical display, instead of opening up
multiple displays from each defined cluster.

Medium Priority

4.1.4 The time-sharing configuration information should be available to the

�O�

job scheduler for optimizing job scheduling (i.e. which nodes and jobs
are time-shared, if any, and for how long resources have been
committed to time-sharing).

4.1.5 Provide a graphical monitoring tool with the following capabilities:

● View history of host load
● Be able to adjust the sample time
● Be able to store data to separate output file
● Be able to capture a snapshot of the graphical representation in

postscript, TIFF, and GIF formats.

4.1.6 Should be able to support both hard and soft limits when appropriate.

● Each supported resource should have a corresponding hard limit.
Jobs exceeding a hard limit should typically be killed, suspended,
held, or rejected, but this should be a function of the job manager,
and site configurable.

● Each supported resource should also have a corresponding soft
limit. Jobs exceeding a soft limit should be notified and allowed to
continue until the hard limit is reached.

4.1.7 Should be readily available. The marketplace must be able to support
the continued development and support of the product. This can be a
defacto standard public domain package with a “marketplace” that
supports it or a commercially supported product with the appropriate
target market.

4.1.8 Should supply some kind of a proxy account optional setup. If it is
deemed necessary that certain machines be available for “open” use,
configuration would be made much easier if the JMS had a few ids
“owned” by the software that are available for use to any user id
defined by a group, subnet, etc. This would make the JMS much more
accessible without the overhead of unnecessary user ids across
multiple systems.

4.1.9 Should provide at least the following accounting capabilities:

● Recorded in flat ascii files to make UNIX command processing of
the data easier

● GUI interface to control data collection

and at least the following datapoints, per node and per cluster:

● Usage of each resource defined to JMS (as specified in 3.1.5)
● Fraction of time JMS was available

��F

● Total and percent of available CPU time used
● Number of logins and users
● Load average of nodes
● Number of batch jobs

Low Priority

4.1.10 Must allow a site to choose to run separate resource managers for each
system (or cluster), as well as a single resource manager for all
systems. A single resource manager for an entire site would allow a
single entry point to which any job could be submitted, and then
routed to the correct system (or cluster) at the site.

4.1.11 Interactive jobs allow user to “detach” from the job, requiring that
output be logged to a file as well. See [DJM93].

4.1.12 Provide a mechanism to allow reservations of any resource (for
example, a capability similar to Session Reservable File System
(SRFS)).

4.1.13 Should provide at least the following attributes for jobs:

● Set of resource consumption counters
● Set of resource limits

4.1.14 Should be able to define and modify a separate access control list for
each supported resource (as specified in 3.1.5).

4.1.15 Should provide wide area support allowing clusters separated by large
distances with relatively slow (> 56Kb/sec) network connections to

share resources. (AHPC project completion date is June 30th 1997)

4.1.16 Should allow an interactive user on a workstation console to instruct
the JMS to suspend or migrate a job to a different workstation.

4.1.17 Should provide both client and server capabilities for Windows NT.

5.0 Futur e Requirements

The following capabilities are recognized as being difficult to implement,
and will be required in the future. They are listed here to assist vendors in
design and feature planning.

��G

High Priority

5.1.1 Gang-scheduling (AHPC project completion date of June 30th 1997):
fully synchronized time-sharing of parallel processes across
distributed nodes. This feature is critical to statically balanced
application and tightly coupled parallel applications, where resonance
in communication delays from time-sharing delays may significantly
degrade performance. Gang-scheduling or co-scheduling should be
implemented on:

● Fixed size partitions
● Variable sized or dynamic partitions

5.1.2 Dynamic load balancing (AHPC project completion date of December

31st 1996), including the ability to:

● Change resource allocation dynamically
● Migrate a running application to other nodes
● Reduce/increase nodes as availability/priority changes
● Fault tolerance

5.1.3 Job migration: Ability to suspend a job or part of a job, and move its
full computing environment (binary, local files, etc.) to a different
node, or set of nodes, of the same architecture. Information about the
best migration point could be given by the user to simplify the
migration process. A published API should be available for
communication between a job and the JMS to provide the system with
necessary information on how and/or when to best suspend or restart

the job. (AHPC project completion date of December 31st 1996)

Medium Priority

5.1.4 OS level checkpointing, providing the ability for the JMS to restart a
job from where it left off and not simply from the beginning.

● Needed for true fault tolerance
● Needed for true dynamic resource allocation

P&QSR TVUXWZY�[]_^a`&bZc]de`&YZfag
The requirements within this paper are the results of iterations of discussions
with the NAS Parallel Systems group andproject members of NASA Coopera-
tive Agreement NCC3-413, including representatives from NASA Ames, NASA
Langley, NASA Lewis, United Technologies Pratt & Whitney group, CFD
Research Center, MacNeal Schwendler, Corp., Massachusetts Institute ofTech-

��H

nology, and the State University of New York [CAN95]. Comments were also
received fromthe Platform Computing, NAS PBS group,Cray Research, IBM,
and SGI regarding requirements of their customers for JMS software.

��I

7.0 References

[CAN95] NASA Cooperative Agreement NCC-413.
URL: http://www.lerc.nasa.gov/Other_Groups/NPSS/html/can95.html

[DJM93] “Distributed Job Manager Administration Guide,” AHPCRC,
Minnesota Supercomputer Center, 1993.

[Hen95] “Portable Batch System: Requirements Specification,” Robert
Henderson and Dave Tweten, Numerical Aerodynamic Simulation
Facility, NASA Ames Research Center, April 1995.

[Kin86] “The Network Queuing System,” B.A. Kinsbury,Cosmic Software,
NASA Ames Research Center, 1986.

[Sap95a] “Job Management Requirements for NAS Parallel Systems and
Clusters”, William Saphir, Leigh Ann Tanner, and Bernard Traversat,
NAS Technical Report NAS-95-006, Numerical Aerodynamic
Simulation Facility, NASA Ames Research Center, February 1995.

[Sap95b] “JSD: Parallel Job Accounting on the IBM SP2,” William Saphir and
James Patton Jones, NAS Technical Report NAS-95-016, Numerical
Aerodynamic Simulation Facility, NASA Ames Research Center, July
1995.

�
J

hjilknmjoqp_rsmjtupwv�xzy'y'{|mj}�~���kn�st���x���kDy'{�tup�o��apw��p�~
��kD�B����p�r�kD}D�'rsmjy�tup����stu�
�jilknmjo�p����stu��p�~����'��k���kDp
mjxz��kn��t������]�
��p�}n�
x�tupVr�yBmjtu�a��{��svZ�ztup��
p�}l�
mj���O��}�mj}n~
��p�rjkD}D�arsmjy�mjr�r�xztjmjr�{��jil�
mj��p���p�t�����}nmjyZtup��
���s}����'�
� �'ya�'��{�v ��t¡��kDp£¢�x�mjya�'��{¤�svl��kD�B�¥~¦�srjxz§¨pw}D�
��©
ª¬«®]¯�°²±l³
´�µ&¶ °�³
ª¬«®]¯�°²±l³
´�µ&¶ °�³

· ¸�¹sº�»�¼¾½/»�¸�»'º�¿ÀÂÁ ¿ÄÃ�¿Ä½/Å¾ÆÈÇ

É]Ê ÃË»�º+Ì>Í
Í
º�¹O¼ÎÌ>Ï/ÐÌ>¿Ä¿;½/ÅBÆ�Ñ É]ÒÓ²»�Í
¹Oº�ÃÎÆ Á
ÀÂÔ »'º�Ç ÕVÖ�Ö�×BØwÙ °²±D³XÚ&Ú

